21312_Factoria

2022-5-16 18:19| 发布者: Hocassian| 查看: 34| 评论: 0|原作者: 肇庆学院ACM合集

摘要:
C:\Users\Administrator\Downloads\2019-10-12-10-14-4-89505133330800-Problem List-采集的数据-后羿采集器.html

Pro.ID

21312

Title

Factorial

Title链接

http://10.20.2.8/oj/exercise/problem?problem_id=21312

AC

23

Submit

32

Ratio

71.88%

时间&空间限制

  • Time Limit: 1000/500 MS (Java/Others)     Memory Limit: 65536/32768 K (Java/Others)
  • 描述

    The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.

    ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1×2×3×4×...×N. The number is very high even for a relatively small N.

    The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

    For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) ≤ Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

    输入

    There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 ≤ N ≤ 1000000000.

    输出

    Description

    The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.

    ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1×2×3×4×...×N. The number is very high even for a relatively small N.

    The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.

    For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) ≤ Z(N2). It is because we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.

    Input

    There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 ≤ N ≤ 1000000000.

    Output

    For every number N, output a single line containing the single non-negative integer Z(N).

    Sample Input

    6
    3
    60
    100
    1024
    23456
    8735373

    Sample Output

    0
    14
    24
    253
    5861
    2183837

    Source

    样例输入

    6
    3
    60
    100
    1024
    23456
    8735373

    样例输出

    0
    14
    24
    253
    5861
    2183837

    作者


    路过

    雷人

    握手

    鲜花

    鸡蛋

    最新评论

    返回顶部