21466_SlimSpan

2022-5-16 18:19| 发布者: Hocassian| 查看: 40| 评论: 0|原作者: 肇庆学院ACM合集

摘要:
C:\Users\Administrator\Downloads\2019-10-12-10-14-4-89505289882600-Problem List-采集的数据-后羿采集器.html

Pro.ID

21466

Title

Slim Span

Title链接

http://10.20.2.8/oj/exercise/problem?problem_id=21466

AC

78

Submit

164

Ratio

47.56%

时间&空间限制

  • Time Limit: 4000/2000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others)
  • 描述

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge eE has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n-1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n-1 edges of T.


    Figure 1: A graph G and the weights of the edges

    For example, a graph G in Figure 1(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 1(b).


    Figure 2: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 2(a)~(d). The spanning tree Ta in Figure 2(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 2(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 2(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    输入

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    nm
    a1b1w1


    ambmwm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ mn(n - 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the k-th edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    输出

    Description

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge eE has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n-1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n-1 edges of T.


    Figure 1: A graph G and the weights of the edges

    For example, a graph G in Figure 1(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 1(b).


    Figure 2: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 2(a)~(d). The spanning tree Ta in Figure 2(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 2(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 2(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    nm
    a1b1w1


    ambmwm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ mn(n - 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the k-th edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, -1 should be printed. An output should not contain extra characters.

    Sample Input

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    Sample Output

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50

    Hint

    与“最小生成树”有关:求一棵最大边与最小边差值最小的生成树,可利用kruskal

    方法一:二分差值

    方法二:枚举最小边

    Source

    样例输入

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    样例输出

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50

    提示

    与“最小生成树”有关:求一棵最大边与最小边差值最小的生成树,可利用kruskal

    方法一:二分差值

    方法二:枚举最小边


    路过

    雷人

    握手

    鲜花

    鸡蛋

    最新评论

    返回顶部