Pro.ID10225 TitleFourier's Lines Title链接http://10.20.2.8/oj/exercise/problem?problem_id=10225 AC0 Submit0 Ratio- 时间&空间限制描述
In one letter written to Bonard, Fourier asked a question: how to draw 17 lines on a plane to make exactly 101 crossings, where each crossing belongs to exactly two lines. Obviously, this is an easy problem, and Figure-1 is a solution that satisfies his requirement. Now the problem for you is a universal one. Can we draw N lines on a plane to make exactly M crossings, where each crossing belongs to exactly two lines? If we can, how many pieces, at most, can these lines cut the plane into? 输入The input may have several sets of test data. Each set is one line containing two integers N and M (1 ≤ N ≤ 100, 0 ≤ M ≤ 10000), separated by a space. The test data is followed by a line containing two zeros, which indicates the end of input and should not be processed as a set of data. 输出Description
In one letter written to Bonard, Fourier asked a question: how to draw 17 lines on a plane to make exactly 101 crossings, where each crossing belongs to exactly two lines. Obviously, this is an easy problem, and Figure-1 is a solution that satisfies his requirement. Now the problem for you is a universal one. Can we draw N lines on a plane to make exactly M crossings, where each crossing belongs to exactly two lines? If we can, how many pieces, at most, can these lines cut the plane into? Input The input may have several sets of test data. Each set is one line containing two integers N and M (1 ≤ N ≤ 100, 0 ≤ M ≤ 10000), separated by a space. The test data is followed by a line containing two zeros, which indicates the end of input and should not be processed as a set of data. Output Output one line for each set of input in the following format: Case i: N lines cannot make exactly M crossings. if the drawing of these lines is impossible; or: Case i: N lines with exactly M crossings can cut the plane into K pieces at most. Note: Even if N or M equals to one, you should use the words "lines" and "crossings" in your output. Sample Input 4 3 Sample Output Case 1: 4 lines with exactly 3 crossings can cut the plane into 8 pieces at most. Source 样例输入4 3 样例输出Case 1: 4 lines with exactly 3 crossings can cut the plane into 8 pieces at most. 作者 |