22512_MetalCutting

2022-5-16 18:22| 发布者: Hocassian| 查看: 31| 评论: 0|原作者: 肇庆学院ACM合集

摘要:
C:\Users\Administrator\Downloads\2019-10-12-10-14-5-89506511322600-Problem List-采集的数据-后羿采集器.html

Pro.ID

22512

Title

Metal Cutting

Title链接

http://10.20.2.8/oj/exercise/problem?problem_id=22512

AC

0

Submit

0

Ratio

-

时间&空间限制

  • Time Limit: 1200/400 MS (Java/Others)     Memory Limit: 131072/65536 K (Java/Others)
  • 描述

    In order to build a ship to travel to Eindhoven, The Netherlands, various sheet metal parts have to be cut from rectangular pieces of sheet metal. Each part is a convex polygon with at most 8 vertices. Each rectangular piece of sheet metal has width n and height m, so that the four corners of the sheet can be specified by the Cartesian coordinates (0, 0), (0, m), (n, m) and (n, 0) in clockwise order. The cutting machine available can make only straight-line cuts completely through the metal. That is, it cannot cut halfway through the sheet, turn, and then cut some more. You are asked to write a program to determine the minimum total length of cuts this machine has to make in order to cut out the polygon. The cuts must be along the edges of the poligon.

    For example, if n = m = 100, and the polygon has vertices (80, 80), (70, 30), (20, 20) and (20, 80), the following diagram shows the optimal cut (the thick lines). The numbers show the order in which the cuts are made.

    输入

    The first line of input contains the two integers n and m where 0 < n, m <= 500. The next line contains p, the number of vertices in the polygon, where 3 <= p <= 8. Each of the next p lines contains two integers x and y where 0 < x < n and 0 < y < m, specifying the vertices of the polygon. The vertices are listed in clockwise order. You may assume that the polygon does not intersect itself, and that no three consecutive vertices are colinear.

    输出

    Description

    In order to build a ship to travel to Eindhoven, The Netherlands, various sheet metal parts have to be cut from rectangular pieces of sheet metal. Each part is a convex polygon with at most 8 vertices. Each rectangular piece of sheet metal has width n and height m, so that the four corners of the sheet can be specified by the Cartesian coordinates (0, 0), (0, m), (n, m) and (n, 0) in clockwise order. The cutting machine available can make only straight-line cuts completely through the metal. That is, it cannot cut halfway through the sheet, turn, and then cut some more. You are asked to write a program to determine the minimum total length of cuts this machine has to make in order to cut out the polygon. The cuts must be along the edges of the poligon.

    For example, if n = m = 100, and the polygon has vertices (80, 80), (70, 30), (20, 20) and (20, 80), the following diagram shows the optimal cut (the thick lines). The numbers show the order in which the cuts are made.

    Input
    The first line of input contains the two integers n and m where 0 < n, m <= 500. The next line contains p, the number of vertices in the polygon, where 3 <= p <= 8. Each of the next p lines contains two integers x and y where 0 < x < n and 0 < y < m, specifying the vertices of the polygon. The vertices are listed in clockwise order. You may assume that the polygon does not intersect itself, and that no three consecutive vertices are colinear.
    Output
    Print the minimum total length of cuts required to cut out the given polygon, accurate to 3 decimal places.
    Sample Input
    100 100
    4
    80 80
    70 30
    20 20
    20 80
    Sample Output
    Minimum total length = 312.575
    Source

    样例输入

    100 100
    4
    80 80
    70 30
    20 20
    20 80

    样例输出

    Minimum total length = 312.575

    作者


    路过

    雷人

    握手

    鲜花

    鸡蛋

    最新评论

    返回顶部